Selected publications

Using genetically encoded heme sensors to probe the mechanisms of heme uptake and homeostasis in Candida albicans. Weissman, Z., Pinsky, M., Donegan, R., Reddi, A.R., Kornitzer, D.    (2020) Cellular Microbiology

Pathways of heme utilization in fungi. Kornitzer. D. and Roy, U. (2020) BBA Mol. Cell Res.

Human serum albumin facilitates heme-iron utilization by fungi. Pinsky, M., Roy, U., Moshe, S., Weissman, Z. and Kornitzer, D. (2020) mBio

Heme-iron acquisition in fungi. Roy, U. and Kornitzer, D. (2019) Current Opinion in Microbiology 52: 77-83.

Regulation of Candida albicans hyphal morphogenesis by endogenous signals. Kornitzer, D. (2019) Journal of Fungi 5(1), 21 doi:10.3390/jof5010021

Genetic analysis of Hsp70 phosphorylation sites reveals a role in Candida albicans cell and colony morphogenesis. Weissman, Z., Pinsky, M., Wolfgeher, D. J., Kron, S. J., Truman, A. W., and Kornitzer, D. (2020) BBA Proteins & Proteomics 1868 (3)

CFEM protein Csa2. Dvir, H. and Kornitzer, D. (2018) Encyclopedia of Inorganic and Bioinorganic Chemistry online, John Wiley & Sons, DOI: 10.1002/9781119951438.eibc2618

A global analysis of kinase function in Candida albicans hyphal morphogenesis reveals a role for the endocytosis regulator Akl1. Bar-Yosef H., Gildor T., Ramirez Zavala B., Schmauch C., Weissman Z., Pinsky M., Naddaf R., Morschhauser J., Arkowitz R.A., and Kornitzer D. (2018) Frontiers in Cellular and Infection Microbiology 8:17.

Chemical inhibitors of Candida albicans hyphal morphogenesis target endocytosis. Bar-Yosef H., Vivanco Gonzalez N., Ben-Aroya S., Kron S.J., and Kornitzer D. (2017) Sci. Rep. 7:5692.

Regulation of the Candida albicans Hypha-Inducing Transcription Factor Ume6 by the CDK1 Cyclins Cln3 and Hgc1. Mendelsohn, S., Pinsky, M., Weissman, Z. and Kornitzer, D. (2017) mSphere 2(2):e00248-16.

Structural basis of haem-iron acquisition by fungal pathogens. Nasser, L., Weissman, Z., Pinsky, M., Amartely, H., Dvir, H. and Kornitzer, D.  (2016) Nature Microbiology 1: 16156.

A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin. Kuznets, G., Vigonsky, E., Weissman, Z., Lalli, D., Gildor, T., Kauffman, S., Turano, P., Becker, J., Lewinson, O. and Kornitzer, D. (2014) PLOS Pathogens 10(10): e1004407.

Phosphorylation of the cyclin CaPcl5 modulates both cyclin stability and specific recognition of the substrate. Simon, E., Gildor, T., and Kornitzer, D. (2013) J. Mol. Biol. 425: 3151-3165.

Role of a Candida albicans Nrm1/Whi5 homolog in cell cycle gene expression and DNA replication stress response. Ofir, A., Hofmann, K., Weindling, E., Gildor, T., Baker, K., Rogers, P.D. and Kornitzer, D. (2012) Mol. Microbiol. 84: 778-794.

Neddylation and CAND1 independently stimulate SCF ubiquitin ligase activity in Candida albicans. Sela, N. Atir-Lande, A. and Kornitzer, D. (2012) Euk. Cell 11: 42-52.

Candida albicans cyclin Clb4 carries S-phase cyclin activity. Ofir, A. and Kornitzer, D., (2010) Euk. Cell 9: 1311-1319.

The Hul5 ubiquitin ligase promotes proteasomal processivity. Aviram, S. and Kornitzer, D. (2010) Mol. Cell. Biol. 30: 985-994.

Fungal mechanisms for host iron acquisition (review). Kornitzer, D. (2009) Curr Opin Microbiol 12: 377-383.

Autophosphorylation-induced degradation of the Pho85 cyclin Pcl5 is essential for response to amino acid limitation. Aviram, S., Simon, E., Gildor, T., and Kornitzer, D. (2008) Mol. Cell. Biol. 28: 6858-69.

An endocytic mechanism for hemoglobin-iron acquisition in Candida albicans. Weissman, Z., Shemer, R., Conibear, E. and Kornitzer, D. (2008) Mol. Microbiol. 69: 201-217.

Synthetic genetic interaction between the ubiquitin conjugating enzyme Cdc34 and a tRNA mutant. Holtzman, T., Meimoun, A. and Kornitzer, D. (2006) Israel Journal of Chemistry 46: 197-206.

Role for the SCFCDC4 ubiquitin ligase in C. albicans morphogenesis. Atir-Lande, A., Gildor, T. and Kornitzer, D. (2005) Mol. Biol. Cell 16: 2772-2785.

Coevolution of cyclin Pcl5 and its substrate Gcn4. Gildor, T., Shemer, R., Atir-Lande, A. and Kornitzer, D. (2005) Eukaryotic Cell 4: 310-318.

A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Weissman, Z. and Kornitzer, D. (2004) Mol. Microbiol. 53: 1209-1220.

Regulation of the transcription factor Gcn4 by the Pho85 cyclin Pcl5. Shemer, R., Meimoun, A., Holtzman, T., and Kornitzer, D. (2002) Mol. Cell. Biol. 22: 5395-5404.

Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans. Weissman, Z., Shemer, R., and Kornitzer, D. (2002) Mol. Microbiol. 44: 1551-1560.

Monitoring protein degradation (review). Kornitzer, D. (2002) Methods Enzymol. 351: 639-647.

A highly polymorphic degenerate microsatellite for molecular strain typing of Candida krusei. Shemer, R., Weissman, Z., Hashman, N., and Kornitzer, D. (2001) Microbiology-UK 147: 2021-2028.

The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Weissman, Z., Berdicevski, I., Cavari, B., and Kornitzer, D. (2000) Proc. Natl. Acad. Sci. USA, 97: 3520-3525.

Modes of regulation of ubiquitin-mediated protein degradation (review). Kornitzer, D. and Ciechanover, A. (2000) J. Cell Physiol. 182: 1-11.

Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCFCDC4 ubiquitin-ligase complex. Meimoun, A., Holtzman, T., Weisman, Z., McBride, H. J., Stillman, D.J., Fink, G. R., and Kornitzer, D. (2000) Mol. Biol. Cell 11: 915-927.